If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+5z-15=0
a = 1; b = 5; c = -15;
Δ = b2-4ac
Δ = 52-4·1·(-15)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{85}}{2*1}=\frac{-5-\sqrt{85}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{85}}{2*1}=\frac{-5+\sqrt{85}}{2} $
| 29+5y=43+3y | | Y+7(y=8 | | F(x)=3x^2+12x+2 | | a+4(a=3 | | 9y(y=3 | | 4x+2=-7x+14 | | 8u=4 | | (2x-7)(-x-7)=0 | | 3(v-4)=-5v-20 | | F(2)=7-4x | | 2(3x-7)^2=50 | | -5x-11=-7(x+3) | | 7p+13=50 | | 6b-7=59 | | .2x=625+.1x | | 217-u=270 | | -v+144=194 | | 92×0.93^x=10 | | 92×0.93^(x)=10 | | 92×0.93^(x)=0 | | 3.3x2=27 | | 3c(c=6 | | (r+2)/8=3/2 | | 5z(z=7 | | 4v(v=2 | | 1/2r+5=13 | | 5x+6=466 | | 2(3a-1)=46 | | 5+6a=18a-12 | | .032s=415 | | 10x+8=-62 | | .032×s=415 |